V. V. Loboda and A. E. Sheveleva

The steady temperature field of a strip and a half strip connected at one end but with different thermophysical properties is determined for mixed conditions in the contact region.

1. Consider the problem of determining the steady temperature field for a half strip $x_{1} \geq 0$ and a strip $\left|x_{2}\right| \leq h$, with the following conditions specified at their boundaries

$$
\begin{gather*}
T^{(1)}\left(x_{1}, \pm h\right)=f_{1}\left(x_{1}\right) \quad\left(x_{1} \geqslant 0\right) \tag{1}\\
T^{(2)}\left(-b, x_{2}\right)=f_{2}\left(x_{2}\right) \tag{2}\\
\frac{\partial T^{(2)}}{\partial x_{1}}\left(0, x_{2}\right)=0 \quad\left(\left|x_{2}\right|>h\right)
\end{gather*}
$$

Here and below, the superscripts (1) and (2) denote characteristics of the halfstrip and strip, respectively; the function $f_{2}\left(x_{2}\right)$ is even.

The steady temperature field in each region is described by the following equations

$$
\begin{equation*}
\frac{d^{2} T^{(i)}}{\partial x_{1}^{2}}+k_{i}^{2} \frac{\partial^{2} T^{(i)}}{\partial x_{2}^{2}}=0 \quad(i=1,2) \tag{3}
\end{equation*}
$$

Suppose that, in some subregion S of the contact region [$-\mathrm{h}, \mathrm{h}$], there is ideal heat transfer, while the rest of the region is heat insulated. Then the matching conditions take the form

$$
\begin{gather*}
T^{(1)}\left(0, x_{2}\right)=T^{(2)}\left(0, x_{2}\right), \\
k_{1}^{(1)} \frac{\partial T^{(1)}}{\partial x_{1}}\left(0, x_{2}\right)=k_{1}^{(2)} \frac{\partial T^{(2)}}{\partial x_{1}}\left(0, x_{2}\right), x_{2} \in S \tag{4}\\
\frac{\partial T^{(1)}}{\partial x_{1}}\left(0, x_{2}\right)=\frac{\partial T^{(2)}}{\partial x_{1}}\left(0, x_{2}\right)=0, x_{2} \notin S
\end{gather*}
$$

To solve the problem, the unknown functions $\phi\left(x_{2}\right)$ and $\bar{\phi}(p)$ are introduced, according to the formulas

$$
\begin{gather*}
\varphi\left(x_{2}\right)=\left\{\begin{array}{cc}
k_{1}^{(1)} \frac{\partial T^{(1)}}{\partial x_{1}}(0, & \left.x_{2}\right), \\
x_{2} \in S \\
0, & x_{2} \in S
\end{array}\right\}=\int_{0}^{\infty} \bar{\varphi}(p) \cos p x_{2} d p \tag{5}\\
\bar{\varphi}(p)=\frac{2}{\pi} \int_{0}^{\infty} \varphi\left(x_{2}\right) \cos p x_{2} d x_{2} .
\end{gather*}
$$

Then, applying the Fourier cos transformation [1] with respect to the coordinate x_{1} to Eq. (3) ($\mathbf{i}=1$) and the boundary conditions in Eq. (1), and taking account of Eq. (5), it is found that

300th-Anniversary-of-the-Union-of-the-Ukraine-with Russia Dnepropetrovsk State University. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 2, pp. 302-307, August, 1987. Original article submitted May 6, 1986.

$$
\begin{aligned}
& \frac{\partial T^{(1)}}{\partial x_{2}}\left(0, x_{2}\right)=\frac{1}{\pi k_{1} k_{3}} \int_{S} \varphi(y) d y \int_{0}^{\infty}\left\{\exp \left[-\left|x_{2}-y\right| p / k_{1}\right]+\right. \\
& \left.+\operatorname{sh}\left(p x_{2} / k_{1}\right) \exp \left[-(h-y) p / k_{1}\right] / \operatorname{ch}\left(p h / k_{1}\right)\right\} d p+\frac{2}{\pi} V_{1}^{\prime}\left(x_{2}\right),
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{f}_{1}(p)=\int_{0}^{\infty} f_{1}\left(x_{1}\right) \cos p x_{1} d x_{1} ; k_{3}=\sqrt{k_{1}^{(1)} k_{2}^{(1)}} ; \\
V_{1}\left(x_{2}\right)=\int_{0}^{\infty} \frac{\bar{f}_{1}(p) \operatorname{ch}\left(p x_{2} / k_{1}\right) d p}{\operatorname{ch}\left(p h / k_{1}\right)} .
\end{gathered}
$$

The solution of the boundary condition in Eqs. (2) and (3) (i=2) and

$$
\frac{\partial T^{(2)}}{\partial x_{1}}\left(0, x_{2}\right)= \begin{cases}\varphi\left(x_{2}\right) / k_{1}^{(2)}, & x_{2} \in S, \\ 0, & x_{2} \oplus S\end{cases}
$$

is obtained using a complex Fourier transformation [1] with respect to the coordinate x_{2}. The expression for the temperature derivative required in the subsequent analysis is

$$
\frac{\partial T^{(2)}}{\partial x_{2}}\left(0, x_{2}\right)=-\frac{1}{\pi k_{4}} \int_{S} \varphi(y) d y \int_{0}^{\infty} \operatorname{th}\left(k_{2} p b\right) \sin p\left(x_{2}-y\right) d p-\frac{1}{\pi} V_{2}^{\prime}\left(x_{2}\right),
$$

where

$$
V_{2}\left(x_{2}\right)=\int_{0}^{\infty} \frac{\bar{f}_{2}(p) \cos p x_{2} d p}{\operatorname{ch}\left(p k_{2} b\right)} ; k_{4}=\sqrt{k_{1}^{(2)} k_{2}^{(2)}} ; \bar{f}_{2}(p)=2 \int_{0}^{\infty} f_{2}(y) \cos p y d y .
$$

Satisfying the matching condition in Eq. (4), which is written in the form

$$
\frac{\partial T^{(1)}}{\partial x_{2}}\left(0, x_{2}\right)=\frac{\partial T^{(2)}}{\partial x_{2}}\left(0, x_{2}\right), x_{2} \in S,
$$

where $T^{(1)}(0, v)=T^{(2)}(0, v)$ (v is some point of region S), the following singular integral equation is obtained

$$
\begin{equation*}
\int_{s}\left[\frac{1}{x_{2}-y}+K\left(x_{2}, y\right)\right] \varphi(y) d y=F\left(x_{2}\right), x_{2} \in S \tag{6}
\end{equation*}
$$

with the additional condition

$$
\begin{equation*}
\int_{S} \mathscr{K}_{0}(y) \varphi(y) d y=F_{0} \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
K\left(x_{2}, y\right)=\frac{1}{\beta k_{1} k_{3}} \int_{0}^{\infty} \frac{\operatorname{sh}\left(p x_{2} / k_{1}\right) \exp \left[-(h-y) p / k_{1}\right] d p}{\operatorname{ch}\left(p h / k_{1}\right)}-\frac{1}{\beta k_{4}} \int_{0}^{\infty}\left[1-\operatorname{th}\left(k_{2} p b\right)\right] \sin p\left(x_{2}-y\right) d p ; \\
K_{0}(y)=\frac{1}{k_{4}} \int_{0}^{\infty}\left\{\exp \left[-(h-y) p / k_{1}\right] \operatorname{ch}\left(p v / k_{1}\right)-\exp \left[-|v-y| p / k_{1}\right] \times\right. \\
\left.\times \operatorname{ch}\left(p h / k_{1}\right)\right\} /\left(p \operatorname{ch}\left(p h / k_{1}\right)\right) d p-\frac{1}{k_{4}} \int_{0}^{\infty} \frac{1}{p} \operatorname{th}\left(k_{2} p b\right) \cos p(v-y) d p ;
\end{gathered}
$$

$$
\begin{gathered}
F\left(x_{2}\right)=-\left[V_{1}^{\prime}\left(x_{2}\right)+V_{2}^{\prime}\left(x_{2}\right)\right] / \beta ; \\
F_{0}=\int_{0}^{\infty} \frac{\overline{f_{2}}(p) \cos p v d p}{\operatorname{ch}\left(k_{2} p b\right)}-2 \int_{0}^{\infty} \frac{\overline{f_{1}}(p) \operatorname{ch}\left(p v / k_{1}\right) d p}{\operatorname{ch}\left(p h / k_{1}\right)} ; \\
\beta=1 / k_{3}+1 / k_{4} .
\end{gathered}
$$

2. The function $K\left(x_{2}, y\right)$ may be written in the form

$$
\begin{equation*}
K\left(x_{2}, y\right)=\frac{1}{\beta k_{3}}\left[\frac{1}{2 h-y-x_{2}}-\frac{1}{2 h-y+x_{2}}\right]+K^{*}\left(x_{2}, y\right), \tag{8}
\end{equation*}
$$

where $K *\left(x_{2}, y\right) \in H, H$ is a set of functions satisfying the Hölder condition in [$-\mathrm{h}, \mathrm{h}$] [2]. This means that, if S includes corner points of the halfstrip, Eq. (6) includes not only mobile singularities but also immobile singularities as $x_{2} \rightarrow \pm h, y \rightarrow h$. Suppose that the heat-insulated layer is at the section $[-\alpha, \alpha]$. This case wī11 be called problem A. Then, taking account of the symmetry of $\phi(y)$, Eqs. (6) and (7) take the form

$$
\begin{gather*}
\int_{a}^{h}\left[\frac{2 x_{2}}{x_{2}^{2}-y^{2}}+M\left(x_{2}, y\right)\right] \varphi(y) d y=F\left(x_{2}\right), x_{2} \in[a, h], \tag{9}\\
\int_{a}^{h} M_{0}(y) \varphi(y) d y=F_{0}, \tag{10}
\end{gather*}
$$

where $M\left(x_{2}, y\right)=K\left(x_{2}, y\right)+K\left(x_{2},-y\right) ; M_{0}(y)=K_{0}(y)+K_{0}(-y)$.
Under the assumption that the unknown function has integrable singularities, $\phi(y)$ is sought in the form

$$
\varphi(y)=\frac{\varphi^{*}(y)}{(y-a)^{\nu}(h-y)^{\alpha}}, \varphi^{*}(y) \in H, 0 \leqslant \alpha, \gamma<1 .
$$

Introducing the holomorphic function

$$
\Phi(z)=\frac{1}{\pi} \int_{-h}^{h} \frac{\varphi(y)}{y-z} d y
$$

the relations following from [2] are employed

$$
\begin{gathered}
\Phi\left(x_{2}\right)=\frac{\varphi^{*}(a) \operatorname{ctg} \pi \gamma}{(h-a)^{\alpha}\left(x_{2}-a\right)^{\gamma}}-\frac{\varphi^{*}(h) \operatorname{ctg} \pi \alpha}{(h-a)^{\gamma}\left(h-x_{2}\right)^{\alpha}}+\Phi_{1}^{0}\left(x_{2}\right), x_{2} \rightarrow a, h ; \\
\Phi\left(2 h-x_{2}\right)=-\frac{\varphi^{*}(h)}{(h-a)^{\gamma}\left(h-x_{2}\right)^{\alpha} \sin \pi \alpha}+\Phi_{2}^{0}\left(x_{2}\right), x_{2} \rightarrow h,
\end{gathered}
$$

where $\quad\left|\Phi_{i}^{0}(z)\right| \leqslant \frac{C_{i}}{(z-\alpha)^{\gamma_{0}}(h-z)^{\alpha_{0}}} ; \operatorname{Re}\left(\gamma_{0}\right)<\operatorname{Re}(\gamma) ; \operatorname{Re}\left(\alpha_{0}\right)<\operatorname{Re}(\alpha) ; \quad C_{i}(i=1,2) \quad$ are real constants.
Taking account of Eq. (8), the characteristic equations for determining the degrees of singularity α and γ are obtained from the condition that a nontrivial solution of Eq. (9) exists

$$
\begin{equation*}
\cos \pi \alpha+\frac{1}{\beta k_{3}}=0, \quad \cos \pi \gamma=0 . \tag{11}
\end{equation*}
$$

If the intervals $[-h,-\alpha],[a, h]$ are heat-insulated sections (problem B), then Eqs. (6) and (7) take the form

$$
\int_{-a}^{a}\left[\frac{1}{x_{2}-y}+K\left(x_{2}, y\right)\right] \varphi(y) d y=F\left(x_{2}\right), x_{2} \in[-a, a]
$$

Fig. 1. Dimensionless temperature distribution in the contact zone with various values of the thermal conductivity of the strip, problem A (a), and the half strip, problem B (b).

$$
\int_{-a}^{a} K_{0}(y) \varphi(y) d y=F_{0}
$$

In this case $\phi(y)=\phi^{*}(y) /\left(a^{2}-y^{2}\right)^{\alpha}$, and $\alpha=0.5$ if $\alpha<h$ or is determined from Eq. (11) if $\alpha=h$. In the latter case, there is no heat insulation in the contact zone.

A numerical method based on the Gauss-Jacobi quadrature formula of greatest algebraic accuracy is used to determine $\phi(y)$ and the temperature distribution in the contact zone [3]

$$
\begin{equation*}
\int_{-1}^{1} \frac{f(z, \tau)}{\left(1-\tau^{2}\right)^{\alpha}} d \tau=\sum_{k=1}^{N} A_{k} f\left(z, \tau_{k}\right) \tag{12}
\end{equation*}
$$

a generalization of this formula to the case $f(z, \tau)=1 /(z-\tau)$ was given in [4]. Here τ_{k} are zeros of the Jacobi polynomial $P_{N}^{(-\alpha,-\gamma)}(\tau)$, A_{k} are constant coefficients.

The application of the method to Eqs. (9) and (10) will now be illustrated. Passing to the segment $[-1,1]$, choosing the zeros $z_{m}(m=1,2, \ldots, N-1)$ of the Jacobi polynomial $P_{N}^{(1-\alpha, 1-\gamma)}(z)$ as the collocation points, and applying Eq. (12), the following system of linear algebraic equations is obtained

$$
\begin{gathered}
\sum_{k=1}^{N} A_{k}\left[\frac{T\left(z_{m}, \tau_{k}\right)}{z_{m}-\tau_{k}}+d M\left(c+d z_{m}, c+d \tau_{k}\right)\right] G\left(c+d \tau_{k}\right)=F\left(c+d z_{m}\right) \\
\sum_{k=1}^{N} A_{k} M_{0}\left(c+d \tau_{k}\right) G\left(c+d \tau_{k}\right)=F_{0} / d
\end{gathered}
$$

where $T(z, \tau)=2(c+d z) /(d(z+\tau)+2 c) ; G\left(c+d \tau_{k}\right)=\left(1-\tau_{k}\right)^{\alpha}\left(1+\tau_{k}\right)^{\gamma} \gamma^{\alpha+\gamma} \phi\left(c+d \tau_{k}\right)$; $c=(h+a) / 2 ; d=(h-a) 2$.

The temperature values in the contact zones are determined by the formulas

$$
\begin{aligned}
T^{(1)}\left(0, x_{2}\right) & =\frac{d}{\pi k_{3}} \sum_{k=1}^{N} A_{k} S_{1}\left(x_{2}, c+d \tau_{k}\right) G\left(c+d \tau_{k}\right)+\frac{2}{\pi} V_{1}\left(x_{2}\right), \\
T^{(2)}\left(0, x_{2}\right) & =\frac{2 d}{\pi k_{4}} \sum_{k=1}^{N} A_{k} S_{2}\left(x_{2}, c+d \tau_{k}\right) G\left(c+d \tau_{k}\right)+\frac{1}{\pi} V_{2}\left(x_{2}\right),
\end{aligned}
$$

where

$$
S_{1}\left(x_{2}, y\right)=\int_{0}^{\infty} \frac{1}{p}\left[\frac{\operatorname{ch}\left(p x_{2} / k_{1}\right)}{\operatorname{ch}\left(p h / k_{1}\right)} \Omega(h, y, p)-\Omega\left(x_{2}, y, p\right)\right] d p
$$

$$
\begin{gathered}
S_{2}\left(x_{2}, y\right)=\int_{0}^{\infty} \frac{1}{p} \operatorname{th}\left(p b k_{2}\right) \cos p y d p \\
\Omega\left(x_{2}, y, p\right)=\exp \left[-\left|x_{2}-y\right| p / k_{1}\right]+\exp \left[-\left|x_{2}+y\right| p / k_{1}\right]
\end{gathered}
$$

The results of calculating the temperature in the contact zone for problems A and B when $h=b=1, a=0.5$ are shown in Fig. 1. The continuous curves correspond to $T(2)\left(x_{*}\right)=$ $T^{(2)}\left(0, x_{2}\right) / T_{0}$ and the dashed curves to $T\left({ }^{1}\right)\left(x_{2}\right)=T^{(1)}\left(0, x_{2}\right) / T_{0}$. For Fig. la

$$
f_{1}\left(x_{1}\right)=0 ; \quad f_{2}\left(x_{2}\right)=\left\{\begin{array}{ll}
T_{0}, & \left|x_{2}\right| \leqslant 2, \\
0, & \left|x_{2}\right|>2,
\end{array} \quad k_{1}=1 ;\right.
$$

and for Fig. 1b

$$
f_{1}\left(x_{1}\right)=\left\{\begin{array}{ll}
T_{0}, & x_{1} \leqslant 2, \\
0, & x_{1}>2,
\end{array} \quad f_{2}\left(x_{2}\right)=0, \quad k_{2}=1 .\right.
$$

These results illustrate the influence of the heat-insulating layer and the thermal conductivities on the temperature distribution in the contact zone.

NOTATION

x_{1}, x_{2}, axes of Cartesian coordinate system; $T^{(1)}, T^{(2)}$, temperature of half strip and strip; $k_{1}^{(i)}, k_{2}(i)(i=1,2)$, thermal conductivities in the directions x_{1}, x_{2}, respectively; 2 h , b , width of strip and halfstrip, respectively; $\phi\left(\mathrm{x}_{2}\right)$, heat flux in the contact region (basic unknown function); S, region of ideal thermal contact; $\{[-\mathrm{h}, \mathrm{h}]-\mathrm{S}\}$, heat-insulated region; $k_{i}^{2}=k\left(\frac{i}{2}\right) / k\left(\frac{i}{1}\right), k_{i+2}=\sqrt{k\left(\frac{i}{1}\right)_{k}\left(\frac{i}{2}\right)}(i=1,2), \beta=1 / k_{3}+1 / k_{4}$, constants determined by the thermal conductivities; α, degree of singularity of the heat flux in the vicinity of the corners of the halfstrip; $P_{N}^{(\alpha, \beta)}(x)$, Jacobi polynomials; $f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)$, functions determining the temperature distribution at the boundaries of the regions.

LITERATURE CITED

1. N. S. Koshlyakov, É. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics [in Russian], Moscow (1962).
2. N. I. Muskhelishvili, Singular Integral Equations [in Russian], Moscow (1968).
3. V. I. Krylov, Approximate Calculation of Integrals [in Russian], Moscow (1959).
4. A. A. Korneichuk, in: Numerical Methods of Solving Differential and Integral Equations and Quadrature Formulas [in Russian], Moscow (1964), pp. 64-74.
