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The steady temperature field of a strip and a half strip connected at one end but with 
different thermophysical properties is determined for mixed conditions in the contact 
region. 

i. COnsider the problem of determining the steady temperature field for a half strip 
x I ~ 0 and a strip Ix2[ ! h, with the following conditions specified at their boundaries 

T~ (xl, + h) = h (xl) (x l~O) ;  

T (2) ( - -  b, x2) = f~ (x~); 

0T (2) 
~ . ( 0 ,  x=)= 0 (Ix, l > h ) .  

Oxx 

(1) 

(2) 

Here and below, the superscripts (i) and (2) denote characteristics of the halfstrip and 
strip, respectively; the function f2(x2) is even. 

The steady temperature field in each region is described by the following equations 

d2T(0 O~T(O (3) 
+k~  2 - = 0  ( i =  1, 2). 

Ox~ o~ 

Suppose that, in some subregion S of the contact region [-h, h], there is ideal heat 
transfer, while the rest of the region is heat insulated. Then the matching conditions take 
the form 

T 0) (0, x2)= T (2) (0, x2), 
(a) 

te~ 1) or('------~) (0, x~)=k~ 2) OT(e-----~) (0, x2), x26S, 
ax~ Ox~ 

OT (1) OT (2) 
- -  (o, x ~ ) -  - -  (o, x~)= o, x~r s. 

OXI OX1 

To solve the problem, the unknown functions #(x 2) and ~(p) are introduced, according to 

k~l) 8T (1) 
(0, x~), x~ E S 

Ox~ 

O, x~ (~ S 

,p (x,) = 

the formulas 

o o  

'~(p) dp = COS px 2 , 

r 

0 

oo 

(p) = .... 2 I q) (x2) cos pxflx2. 
0 

(s) 

Then, applying the Fourier cos transformation [i] with respect to the coordinate xl to Eq. (3) 
(i = i) and the boundary conditions in Eq. (i), and taking account of Eq. (5), it is found 
that 
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where 

OT( I_____~ ~ 
(0, x2)= 1 t" ~(y)dy ~ {exp[.[x2--y[p/k~l 4- 

OX2 z~klk3 "s 

+ sh (px~/ka) exp [-- (h -- y) p/kxl/ch (ph/kl)} dp + 2 V; (x2), 

t l ( P ) =  ~fl{Xl)cospxldXl; k3 V A(1)~'(1) 
0 

o~ TI(P) ch (px~/k~) dp V1 (x~) 
Jo ch (ph/k 0 

The solution of the boundary condition in Eqs. (2) and (3) (i = 2) and 

OT (2) [~ (x~)/ki ~), x, 6 S, 
ox-----E (o, ~) = lo, ~ ~ s  

is obtained using a complex Fourier transformation [i] with respect to the coordinate x 2. 
The expression for the temperature derivative required in the subsequent analysis is 

where 

OT(2------~) (O, x2)=  -- ~ S r dy ~, th(k~pb)sinp(x~--y)dp I V~(x2), 
Ox2 z~le~ s "o n 

V~(x2)-- i ~(p)cospx~dp ," ,~1~(2)~(2) , ~ 2  , -- 
o ch (pk2b) k~ = V f~ (p) = 2 f~ (y) cos pydy. 

0 

Satisfying the matching condition in Eq. (4), which is written in the form 

OT o) OT(2) 
ox----7--(o, x,) - ox----7- (o, x,), x~ c s,  

where  T(z )  (0 ,  v)  = T ( 2 ) ( 0 ,  v)  (v  i s  some p o i n t  o f  r e g i o n  S ) ,  t h e  f o l l o w i n g  s i n g u l a r  i n t e g r a l  equa -  
t i o n  is obtained 

~ [ x2--1 Y -k K(x2, y)] q~(y)dy= F(x2), x~6S, (6)  

with the additional condition 

] Ko (y) ~ (y) dy = Fo, (7) 
S 

where 

K(x2, y ) :  ~klk--------~61 ~ sh(pxJkl)exp[--(h--y)p/kl]dPch(ph/kO ~k~l ~o [1--th(k~pb)]sinp(x2--y)dp; 

1 S {exp [-- (h -- y) P/kxl ch (pv/k 0 -- exp [-- [v - -  y[ p/k,] x Ko (V) - le~ o 

x ch (ph/k~)}/(p ch (phlkO) dp -- 1il 
k~. p 

th (k~pb) cos p (v -- y) dp; 
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. 

F (x2) = - -  iV; (x.,) + V~ (x~)l/~; 

= ~ L ( p )  ch(pv /k~)  d p  . 
Fo = S ~ ( ; )  cos pvdp _ 2 t' ch (ph/k 0 ' 

o ch (k~.pb) 8 

= 1/k 3 + l/k+ 

The function K(x2, y) may be written in the form 

1 [ 1 1 ] + K , ( x , . , y ) ,  
K (x~, y) = [~k---~ 2h - -  y - -  x~ 2/* - -  y + x~ 

(8 )  

where K*(x2, y) E H, H is a set of functions satisfying the Holder condition in [-h, h] [2]. 
This means that, if S includes corner points of the halfstrip, Eq. (6) includes not only 
mobile singularities but also immobile singularities as x 2 + ~h, y + h. Suppose that the 
heat-insulated layer is at the section [-q, a]. This case will be called problem A. Then, 
taking account of the symmetry of r Eqs. (6) and (7) take the form 

~ M (x2, y) ~ (y) dy = F (x~), x2 ~ [a, hl, (9) 

h 

J" Me (y) r (y) dy = F o, (10) 
a 

where M(x2, y) = K(x2, y) + K(x2, -y); M0(y ) = K0(y) + K0(-y). 

Under the assumption that the unknown function has integrable singularities, r is 
sought in the form 

~P (Y) = (V) 
(y__a)V(h_y)~ , r O ~ a ,  ? < 1 .  

lhtroducing the holomorphic function 

( z ) =  1 i ~o(v) 
V - - z  - - h  

the relations following from [2] are employed 

a) (x~) - q~* (a) c tg  ~?  
(h - -  a) = (x~ - -  a) v 

q~* (h) ctg ~a 

dy 

a) (2h - -  x~) = - -  

(h - -  a F  (h - -  x~) ~ 
+ . o  (x._), x2 -+ a, h; 

,~* (h) 

(h - -  a) v (h - -  x2) = sin ~ a  
0 + cp2 (x2), x 2 - +  h, 

~o Ci where l i ( z ) ] ~  (z__~)VO(h__z)~O ; R e ( y o ) < R e ( y ) ;  R e ( a o ) < R e ( ~ ) ;  C i ( i :  1, 2) are real constants. 

Taking account of Eq. (8), the characteristic equations for determining the degrees of 
singularity ~ and y are obtained from the condition that a nontrivial solution of Eq. (9) 
exists 

1 
c o s ~ c z +  --  0, cos.~? = 0. ( 1 1 )  

If the intervals [-h, -a], [a, h] are heat-insulated sections (problem B), then Eqs. (6) 
and (7) take the form 

i [  1 ~-K(xo.,Y)J~(y)dy=F(x2), x.,E[--a, a], 
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Fig. i. Dimensionless temperature distribution 
in the contact zone with various values of the 
thermal conductivity of the strip, problem A (a), 
and the half strip, problem B (b) 

i Ko (y) ~ (y) dy = Fo. 
--a 

In this case ~(y) = #*(y)/(a 2 - y2)~, and ~ = 0.5 if a < h or is determined from Eq. (ii) 
if a = h. In the latter case, there is no heat insulation in the contact zone. 

A numerical method based on the Gauss-Jacobi quadrature formula of greatest algebraic 
accuracy is used to determine ~(y) and the temperature distribution in the contact zone [3] 

f (z, ~) d~ = ~ A d  (z, zk), (12) 
- z  (1 - - ~ 2 )  ~ h=l  

a generalization of this formula to ,the case f(z, ~) = i/(z - ~) was given in [4]. Here T k 
are zeros of the Jacobi polynomial P~-~,-~)(~), A k are constant coefficients. 

The application of the method to Eqs. (9) and (i0) will now be illustrated. Passing to 
the segment [-i, i], choosing the zeros z m (m = i, 2, ..., N - i) of the Jacobi polynomial 

P~1-a,1-Y)(z) as the collocation points, and applying Eq. (12), the following system of 

linear algebraic equations is obtained 

N [  T (zm' ~:h) ] 
h~__ Ah q- dM (c -4- dzm, c -J- d'ch) G (C --}- d'r = F (c-Jf-dzm), 

1 Z m - -  Th 

N 

A~,Mo (c + dvl,)G (c + dzh) =Fo/d, 

where T(z, T) = 2(c + dz)/(d(z + ~) + 2c); G(c + dTk) = (i - ~k )a (I + ~k)Tda+7O(c + d~k) ; 
c = (h + a)/2; d = (h -~)2. 

The temperature values in the contact zones are determined by the formulas 

N 
d ~ AhS1 (x~, c -[- d%) G (c -~- dTh)-[- ~ V1 (x2), T(~(O, x~)= ~k--~=~ 

T (2)(0, xo.) 2d N = - -  ~ AhS2 (x.,., c + d~h) G (c + d~k) @ 1 V2 (x~), 

where 

!__fi._[ ch(px.:/k~!. ~(h, y, p)--fl(xo, y, P) I S~ (x.o, y) = ~ 1 ch (ph/k~) . dp; 
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1 
S= (x~, y) = [ th (pbk2) cos pydp; 

b P 

(x~, b', P) = exp [-Ix=-yi p/kd + exp [--Ix=+ v[plkl]. 

The results of calculating the temperature in the contact zone for problems A and B 
when h = b = i, a = 0.5 are shown in Fig. i. The continuous curves correspond to T.~.2)(x~.) = 

T(2)(O, x2)/T 0 and the dashed curves to T~1)(x2) = T(1)(O, x2)/T 0. For Fig. la 

and for Fig. ib 

To, lx2[~2, k l = l ;  
fi(x0=0; A(x~)= 0, Ix21>2, 

[~ (xl) = / To, x1~2, 
[0, x1>2, [~(x2) =0, k~=l, 

These results illustrate the influence of the heat-insulating layer and the thermal 
conductivities on the temperature distribution in the contact zone. 

NOTATION 

xl, x2, axes of Cartesian coordinate system; T (I), T (2), temperature of half strip and 

strip; k~ i), k2(i)(i = i, 2), thermal conductivities in the directions xl, x2, respectively; 

2h, b, width of strip and halfstrip, respectively; r , heat flux in the contact region 
(basic unknown function); S, region of ideal thermal contact; {[-h, h] - S}, heat-insulated 

region; k~ = k(~)/k({), ki+ 2 = /k({)k(�89 (i = I, 2), 8 = i/k 3 + i/k 4, constants determined 
1 

by the thermal conductivities; a, degree of singularity of the heat flux in the vicinity of 
the corners of the halfstrip; Pi~,8)(x), Jacobi polynomials; f1(xl), f2(x2), functions deter- 
mining the temperature distribution at the boundaries of the regions. 
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